Copied to
clipboard

G = C23.301C24order 128 = 27

18th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.301C24, C24.241C23, C42:4C4:3C2, C23.19(C4oD4), (C23xC4).71C22, (C2xC42).29C22, C4o3(C23.Q8), C4.50(C42:2C2), C4o4(C23.11D4), (C22xC4).501C23, C23.Q8.49C2, C4o(C23.84C23), C23.11D4.66C2, C4o4(C23.83C23), C23.84C23:20C2, C23.83C23:147C2, C2.C42.536C22, C2.16(C23.36C23), (C4xC4:C4):54C2, (C2xC4).92(C4oD4), (C4xC22:C4).34C2, C2.9(C2xC42:2C2), (C2xC4:C4).843C22, C22.181(C2xC4oD4), (C2xC4)o2(C23.11D4), (C2xC22:C4).449C22, (C2xC4)o(C23.84C23), (C2xC4)o2(C23.83C23), (C22xC4)o(C23.84C23), (C22xC4)o(C23.83C23), SmallGroup(128,1133)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.301C24
C1C2C22C23C22xC4C23xC4C4xC22:C4 — C23.301C24
C1C23 — C23.301C24
C1C22xC4 — C23.301C24
C1C23 — C23.301C24

Generators and relations for C23.301C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=f2=1, d2=cb=bc, e2=b, g2=a, ab=ba, ac=ca, ede-1=ad=da, ae=ea, af=fa, ag=ga, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, dg=gd, eg=ge, fg=gf >

Subgroups: 372 in 216 conjugacy classes, 100 normal (13 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2xC4, C2xC4, C23, C23, C23, C42, C22:C4, C4:C4, C22xC4, C22xC4, C22xC4, C24, C2.C42, C2.C42, C2xC42, C2xC22:C4, C2xC4:C4, C23xC4, C42:4C4, C4xC22:C4, C4xC4:C4, C23.Q8, C23.11D4, C23.83C23, C23.84C23, C23.301C24
Quotients: C1, C2, C22, C23, C4oD4, C24, C42:2C2, C2xC4oD4, C2xC42:2C2, C23.36C23, C23.301C24

Smallest permutation representation of C23.301C24
On 64 points
Generators in S64
(1 23)(2 24)(3 21)(4 22)(5 37)(6 38)(7 39)(8 40)(9 41)(10 42)(11 43)(12 44)(13 45)(14 46)(15 47)(16 48)(17 49)(18 50)(19 51)(20 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 61)(34 62)(35 63)(36 64)
(1 5)(2 6)(3 7)(4 8)(9 55)(10 56)(11 53)(12 54)(13 59)(14 60)(15 57)(16 58)(17 63)(18 64)(19 61)(20 62)(21 39)(22 40)(23 37)(24 38)(25 43)(26 44)(27 41)(28 42)(29 47)(30 48)(31 45)(32 46)(33 51)(34 52)(35 49)(36 50)
(1 7)(2 8)(3 5)(4 6)(9 53)(10 54)(11 55)(12 56)(13 57)(14 58)(15 59)(16 60)(17 61)(18 62)(19 63)(20 64)(21 37)(22 38)(23 39)(24 40)(25 41)(26 42)(27 43)(28 44)(29 45)(30 46)(31 47)(32 48)(33 49)(34 50)(35 51)(36 52)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 13 5 59)(2 46 6 32)(3 15 7 57)(4 48 8 30)(9 63 55 17)(10 36 56 50)(11 61 53 19)(12 34 54 52)(14 38 60 24)(16 40 58 22)(18 42 64 28)(20 44 62 26)(21 47 39 29)(23 45 37 31)(25 51 43 33)(27 49 41 35)
(2 6)(4 8)(10 56)(12 54)(13 57)(14 16)(15 59)(17 61)(18 20)(19 63)(22 40)(24 38)(26 44)(28 42)(29 45)(30 32)(31 47)(33 49)(34 36)(35 51)(46 48)(50 52)(58 60)(62 64)
(1 27 23 55)(2 28 24 56)(3 25 21 53)(4 26 22 54)(5 41 37 9)(6 42 38 10)(7 43 39 11)(8 44 40 12)(13 49 45 17)(14 50 46 18)(15 51 47 19)(16 52 48 20)(29 61 57 33)(30 62 58 34)(31 63 59 35)(32 64 60 36)

G:=sub<Sym(64)| (1,23)(2,24)(3,21)(4,22)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,61)(34,62)(35,63)(36,64), (1,5)(2,6)(3,7)(4,8)(9,55)(10,56)(11,53)(12,54)(13,59)(14,60)(15,57)(16,58)(17,63)(18,64)(19,61)(20,62)(21,39)(22,40)(23,37)(24,38)(25,43)(26,44)(27,41)(28,42)(29,47)(30,48)(31,45)(32,46)(33,51)(34,52)(35,49)(36,50), (1,7)(2,8)(3,5)(4,6)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48)(33,49)(34,50)(35,51)(36,52), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,13,5,59)(2,46,6,32)(3,15,7,57)(4,48,8,30)(9,63,55,17)(10,36,56,50)(11,61,53,19)(12,34,54,52)(14,38,60,24)(16,40,58,22)(18,42,64,28)(20,44,62,26)(21,47,39,29)(23,45,37,31)(25,51,43,33)(27,49,41,35), (2,6)(4,8)(10,56)(12,54)(13,57)(14,16)(15,59)(17,61)(18,20)(19,63)(22,40)(24,38)(26,44)(28,42)(29,45)(30,32)(31,47)(33,49)(34,36)(35,51)(46,48)(50,52)(58,60)(62,64), (1,27,23,55)(2,28,24,56)(3,25,21,53)(4,26,22,54)(5,41,37,9)(6,42,38,10)(7,43,39,11)(8,44,40,12)(13,49,45,17)(14,50,46,18)(15,51,47,19)(16,52,48,20)(29,61,57,33)(30,62,58,34)(31,63,59,35)(32,64,60,36)>;

G:=Group( (1,23)(2,24)(3,21)(4,22)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,61)(34,62)(35,63)(36,64), (1,5)(2,6)(3,7)(4,8)(9,55)(10,56)(11,53)(12,54)(13,59)(14,60)(15,57)(16,58)(17,63)(18,64)(19,61)(20,62)(21,39)(22,40)(23,37)(24,38)(25,43)(26,44)(27,41)(28,42)(29,47)(30,48)(31,45)(32,46)(33,51)(34,52)(35,49)(36,50), (1,7)(2,8)(3,5)(4,6)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48)(33,49)(34,50)(35,51)(36,52), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,13,5,59)(2,46,6,32)(3,15,7,57)(4,48,8,30)(9,63,55,17)(10,36,56,50)(11,61,53,19)(12,34,54,52)(14,38,60,24)(16,40,58,22)(18,42,64,28)(20,44,62,26)(21,47,39,29)(23,45,37,31)(25,51,43,33)(27,49,41,35), (2,6)(4,8)(10,56)(12,54)(13,57)(14,16)(15,59)(17,61)(18,20)(19,63)(22,40)(24,38)(26,44)(28,42)(29,45)(30,32)(31,47)(33,49)(34,36)(35,51)(46,48)(50,52)(58,60)(62,64), (1,27,23,55)(2,28,24,56)(3,25,21,53)(4,26,22,54)(5,41,37,9)(6,42,38,10)(7,43,39,11)(8,44,40,12)(13,49,45,17)(14,50,46,18)(15,51,47,19)(16,52,48,20)(29,61,57,33)(30,62,58,34)(31,63,59,35)(32,64,60,36) );

G=PermutationGroup([[(1,23),(2,24),(3,21),(4,22),(5,37),(6,38),(7,39),(8,40),(9,41),(10,42),(11,43),(12,44),(13,45),(14,46),(15,47),(16,48),(17,49),(18,50),(19,51),(20,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,61),(34,62),(35,63),(36,64)], [(1,5),(2,6),(3,7),(4,8),(9,55),(10,56),(11,53),(12,54),(13,59),(14,60),(15,57),(16,58),(17,63),(18,64),(19,61),(20,62),(21,39),(22,40),(23,37),(24,38),(25,43),(26,44),(27,41),(28,42),(29,47),(30,48),(31,45),(32,46),(33,51),(34,52),(35,49),(36,50)], [(1,7),(2,8),(3,5),(4,6),(9,53),(10,54),(11,55),(12,56),(13,57),(14,58),(15,59),(16,60),(17,61),(18,62),(19,63),(20,64),(21,37),(22,38),(23,39),(24,40),(25,41),(26,42),(27,43),(28,44),(29,45),(30,46),(31,47),(32,48),(33,49),(34,50),(35,51),(36,52)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,13,5,59),(2,46,6,32),(3,15,7,57),(4,48,8,30),(9,63,55,17),(10,36,56,50),(11,61,53,19),(12,34,54,52),(14,38,60,24),(16,40,58,22),(18,42,64,28),(20,44,62,26),(21,47,39,29),(23,45,37,31),(25,51,43,33),(27,49,41,35)], [(2,6),(4,8),(10,56),(12,54),(13,57),(14,16),(15,59),(17,61),(18,20),(19,63),(22,40),(24,38),(26,44),(28,42),(29,45),(30,32),(31,47),(33,49),(34,36),(35,51),(46,48),(50,52),(58,60),(62,64)], [(1,27,23,55),(2,28,24,56),(3,25,21,53),(4,26,22,54),(5,41,37,9),(6,42,38,10),(7,43,39,11),(8,44,40,12),(13,49,45,17),(14,50,46,18),(15,51,47,19),(16,52,48,20),(29,61,57,33),(30,62,58,34),(31,63,59,35),(32,64,60,36)]])

44 conjugacy classes

class 1 2A···2G2H2I4A···4H4I···4AH
order12···2224···44···4
size11···1441···14···4

44 irreducible representations

dim1111111122
type++++++++
imageC1C2C2C2C2C2C2C2C4oD4C4oD4
kernelC23.301C24C42:4C4C4xC22:C4C4xC4:C4C23.Q8C23.11D4C23.83C23C23.84C23C2xC4C23
# reps11331331244

Matrix representation of C23.301C24 in GL6(F5)

100000
010000
001000
000100
000040
000004
,
400000
040000
001000
000100
000010
000001
,
100000
010000
004000
000400
000010
000001
,
330000
020000
003000
000300
000031
000022
,
300000
030000
000100
001000
000043
000001
,
100000
340000
001000
000400
000010
000001
,
100000
010000
004000
000400
000030
000003

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,0,0,0,0,0,3,2,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,2,0,0,0,0,1,2],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,3,1],[1,3,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,3,0,0,0,0,0,0,3] >;

C23.301C24 in GAP, Magma, Sage, TeX

C_2^3._{301}C_2^4
% in TeX

G:=Group("C2^3.301C2^4");
// GroupNames label

G:=SmallGroup(128,1133);
// by ID

G=gap.SmallGroup(128,1133);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,672,253,232,758,723,80]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=1,d^2=c*b=b*c,e^2=b,g^2=a,a*b=b*a,a*c=c*a,e*d*e^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,e*g=g*e,f*g=g*f>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<